closed

Anders Persson
Session
ID: demo5M3DE6-C5S
Time limit: $\mathbf{3 0} \mathbf{~ m i n}$.
Status: closed
Started on: 2014-02-07 13:47 UTC

Score:

\square ?
of 100

1. Equi
score: 50 of 100
Find an index in an array such that its prefix sum equals its suffix sum.

Task description

This is a demo task. You can read about this task and its solutions in this blog post.
A zero-indexed array A consisting of N integers is given. An equilibrium index of this array is any integer P such that $0 \leq P$ $<N$ and the sum of elements of lower indices is equal to the sum of elements of higher indices, i.e.

$$
\begin{aligned}
& \mathrm{A}[0]+\mathrm{A}[1]+\ldots+\mathrm{A}[\mathrm{P}-1]=\mathrm{A}[\mathrm{P}+1]+\ldots+\mathrm{A}[\mathrm{~N}-2] \\
& +\mathrm{A}[\mathrm{~N}-1] .
\end{aligned}
$$

Sum of zero elements is assumed to be equal to 0 . This can happen if $\mathrm{P}=0$ or if $\mathrm{P}=\mathrm{N}-1$.
For example, consider the following array A consisting of $\mathrm{N}=7$ elements:

$$
\begin{array}{lll}
\mathrm{A}[0]=-7 & \mathrm{~A}[1]=1 & \mathrm{~A}[2]=5 \\
\mathrm{~A}[3]=2 & \mathrm{~A}[4]=-4 & \mathrm{~A}[5]=3 \\
\mathrm{~A}[6]=0 & &
\end{array}
$$

$P=3$ is an equilibrium index of this array, because:

- $A[0]+A[1]+A[2]=A[4]+A[5]+A[6]$
$P=6$ is also an equilibrium index, because:

$$
\text { - } A[0]+A[1]+A[2]+A[3]+A[4]+A[5]=0
$$

and there are no elements with indices greater than 6 .
$P=7$ is not an equilibrium index, because it does not fulfill the condition $0 \leq \mathrm{P}<\mathrm{N}$.
W rite a function
class Solution \{ public int solution(int[]
A) ; \}
that, given a zero-indexed array A consisting of N integers, returns any of its equilibrium indices. The function should
return -1 if no equilibrium index exists.
Assume that:

- N is an integer within the range
[0..10,000,000];
- each element of array A is an integer within
the range $[-2,147,483,648 . .2,147,483,647]$.
For example, given array A such that
$\begin{array}{lll}\mathrm{A}[0]=-7 & \mathrm{~A}[1]=1 & \mathrm{~A}[2]=5 \\ \mathrm{~A}[3]=2 & \mathrm{~A}[4]=-4 & \mathrm{~A}[5]=3\end{array}$
$A[6]=0$
the function may return 3 or 6, as explained above. Complexity
- expected worst-case time complexity is $\mathrm{O}(\mathrm{N})$;
- expected worst-case space complexity is $O(N)$
beyond input storage (not counting the
storage required for input arguments).
Elements of input arrays can be modified.
Copyright 2009-2014 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Code: 14:10:14 UTC, java, final, score: 50.00

```
// you can also use imports, for example:
// import java.math.*;
class Solution
    public int solution(int[] A) \{
        // write your code in Java SE 6
        int i = 0;
        int beforesum \(=0\);
            int beforeindex = 0;
        int aftersum = 0;
        int afterindex \(=0\);
        int result \(=-1\);
        while ( i < A.length )
        \{
            beforeindex \(=0\);
            aftersum = 0;
            beforesum =0;
            while ( beforeindex < i )
                \{
            beforesum \(=\) beforesum +
                    A[beforeindex];
                    beforeindex = beforeindex
                    +1 ;
            \}
            afterindex = i +1;
            while ( afterindex < A.length )
            \{
                    aftersum \(=\) aftersum+
                        A[afterindex];
                    afterindex \(=\) afterindex +1 ;
            \}
            if (aftersum == beforesum)
            \{
                    result = i
            \}
            i \(=\mathrm{i}+1\);
        \}
        return result;
    \}
\}
```


Analysis

Codility
test
time
example Test from the task description
rimple
result

