2014-2-7

closed

Anders Persson

Session
ID: demo5M3DE6-C5S
Time limit: 30 min.

Status: closed
Started on: 2014-02-07 13:47 UTC

Codility

[

)

See how Codility works from recruiter's point of view.

Score:

of 100

1. Equi

score: 50 of 100 |

Find an index in an array such that its prefix sum equals its suffix sum.

Task description

This is a demo task. You can read about this task and its
solutions in this blog post.

A zero-indexed array A consisting of N integers is given. An
equilibrium index of this array is any integer P such that 0 <P
< N and the sum of elements of lower indices is equal to the
sum of elements of higher indices, i.e.

A[0] + A[1] + ... + A[P—1] = A[P+1] + ... + A[N-2]
+AIN-1].

Sum of zero elements is assumed to be equal to 0. This can
happenif P =0 orif P = N-1.

For example, consider the following array A consisting of N =7
elements:

A[0] = -7 A[1] = 1 A[2] =5
A[3] = 2 A[4] = -4 A[5] =3
A[6] = 0

P =3 is an equilibrium index of this array, because:
e A[0] + A[1] + A[2] = A[4] + A[5] + A[6]

P =6 is also an equilibrium index, because:
e A[0O] +A[1] + A[2] + A[3] + A[4] + A[5]1 =0

and there are no elements with indices greater than 6.

P =7 is not an equilibrium index, because it does not fulfill the
condition 0 <P < N.

Write a function

class Solution { public int solution (int[]
A); }

that, given a zero-indexed array A consisting of N integers,
returns any of its equilibrium indices. The function should
return —1 if no equilibrium index exists.

Assume that:

¢ Nis an integer within the range
[0..10,000,000];
¢ each element of array Ais an integer within

the range [-2,147,483,648..2,147,483,647].

For example, given array A such that

A[0] = -7 All] = 1 A[2] = 5
A[3] = 2 A[4] = -4 A[5] =3
Al6] = 0

the function may return 3 or 6, as explained above.
Complexity:

e expected worst-case time complexity is O(N);

e expected worst-case space complexity is O(N),
beyond input storage (not counting the
storage required for input arguments).

Elements of input arrays can be modified.

Copyright 2009-2014 by Codility Limited. All Rights Reserved.
Unauthorized copying, publication or disclosure prohibited.

https://codility.com/demo/results/demo5SM 3D EG-C5S/

Solution

Programming language used: Java
Total time used: 23 minutes
Effective time used: 23 minutes
Notes: not defined yet

Task timeline

VAV \vavavvava 4

13:47:46 14:10:14

Code: 14:10:14 UTC, java, final, score: 50.00

01.| // you can also use imports, for example:
02. // import java.math.*;
03.| class Solution {

4. public int solution(int[] A) {

05. // write your code in Java SE 6

06.

7. int i = 9;

08. int beforesum = 9;

09. int beforeindex = 0;

10. int aftersum = 9;

11. int afterindex =0;

12. int result = -1;

13. while (i < A.length)

14. {

15. beforeindex = 0;

16. aftersum = 0;

17. beforesum =0;

18. while (beforeindex < i)

19.

20. beforesum = beforesum+
A[beforeindex];

21. beforeindex = beforeindex
+1;

22.

23. afterindex = i +1;

24. while (afterindex < A.length)

25.

26. aftersum = aftersum+
A[afterindex];

27. afterindex = afterindex +1;

28.

29. if (aftersum == beforesum)

30. {

31. result = i;

32. }

33.

34. i=1+1;

35. }

36.

37. return result;

38. }

39.0 }

Analysis

12

https://codility.com/pricing/
http://blog.codility.com/2011/03/solutions-for-task-equi.html
https://codility.com/tasks/equi/stats/

2014-2-7

Codility
test time

example
Test from the task description

0.300 s.

simple 0.300 s.

extreme_large_numbers
Sequence with extremly large numbers 0.300 s.
testing arithmetic overflow.

extreme_negative_numbers
Sequence with extremly large numbers 0.290 s.
testing arithmetic overflow.

overflow_tests1

https://codility.com/demo/results/demo5SM 3D EG-C5S/

)) 0.300 s.
arithmetic overflow tests
overflow_tests2

- 2 .

arithmetic overflow tests 0.230's
one_large
one large number at the end of the 0.290 s.
sequence
sum_0 0.290 s.
sequence with sum=0
single
single number 0.300s.
empty 0.290 s.
Empty array

mbination f_tw
co _b ations_of_two 0.290 s.
multiple runs, all combinations of {-1,0,1}72
conjblnatlons_of_threg 0.300 s.
multiple runs, all combinations of {-1,0,1}/~3
small_pyramid 0.310 s.
large_long_sequence_of_ones 1.140 s.

large_long_sequence_of_minus_ones 1.150 s.

medium_pyramid 1.190 s.

large_pyramid
Large performance test, O(n~2) solutions 2.190 s.
should fail.

result
OK
OK
WRONG ANSV

got 2, but it is not
equilibrium point,
sum[0..1]=42949¢
sum[3..3]=-2
WRONG ANSV
got 2, but it is not
equilibrium point,
sum[0..1]=-42949
right sum (empty ¢

WRONG ANSV
got 0, but it is not
equilibrium point, |
sum (empty set)=l
sum[1..2]=-42949

WRONG ANSV
got 2, but it is not
equilibrium point,

sum[0..1]=-42949
right sum (empty ¢

OK

OK
OK

OK
OK

OK

OK
TIMEOUT ERR

running time: >1.1
time limit: 0.98 se«

TIMEOUT ERR
running time: >1.1
time limit: 0.98 se«

TIMEOUT ERR
running time: >1.1
time limit: 0.94 se«

TIMEOUT ERR
running time: >2.1
time limit: 1.06 se¢

22

https://codility.com/pricing/

